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Abstract 

Theorems referring to subgroups of the finite double 
point groups are formulated. All possible non-evident 
subgroups are enumerated. The results obtained for 
subgroups correspond to well known Opechowski rules 
for classes of double groups. 

For some purposes, e.g. for finding the transitive 
permutational representations (Hall, 1959, 
Gorzkowski, 1976) playing a very important role in 
so-called coloured symmetry, it is necessary to know all 
the subgroups of the finite double point groups. This 
problem is analyzed in this paper. Three theorems 
referring to the subgroups of the finite double point 
groups will be formulated. In a certain sense these 
theorems are analogous to the well known Opechowski 
(1940) rules referring to the classes of double point 
groups. 

According to Gorzkowski & Suffczynski (1978)we 
remark that if H is a su_bgroup of the single group G, 
then the double group H is a subgroup of the double 
group G. This fact is used implicitly in many 
expositions dealing with the double groups (e.g. 
Bradley & CrackneU, 1972) and it will not be proved 
here. 
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A subgroup of the double point group which itself is 
a double group in the sense that it includes the identity 
E and the rotation E through the angle 27c shall be 
called an evident subgroup. The problem of the 
non-evident subgroups of all the crystallographic 
double point groups has been solved (Gorzkowski & 
Suffczynski, 1978). Now the finite double point groups 
without crystallographic restrictions are investigated. 

At the beginning, for simplicity, the double point 
groups without improper rotations are taken into 
account. The following theorem will be proved. 

Theorem 1 

Every non-evident subgroup of the finite double 
point group without improper rotations can contain 
only the rotations C~+t through the angles 47d/(2n + 1) 
where l and n are integers. 

Proof. At first the even-order symmetry axis is 
considered. Let C2, , denote the rotation through the 
angle 2z~/2n = z~/n, and C2n the rotation through the 
angle z~/n + 27c. One can have: 

c~. . = ~ . .  = ~. 

We see that the group generated by C2n o r  C2n 
contains both E and E. Therefore, the subgroup 
containing the even-order symmetry axis is an evident 
one. 

Now the odd-order symmetry axis is taken into 
account. Let C2n+1 denote the rotation through the 
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angle 27r/(2n + 1) and C"2,+a the rotation through the 
angle 2zd(2n + 1) + 2zt. Now, we can have: 

C~.+~ ~, 
2 n + l  = 

C/, + ~ 4= E, for every integer l. 

This means that the subgroups generated by C_2,+t 
are evident ones, but the subgroups generated by C2,+~ 
are non-evident ones. We have: 

/ - , 2  " ~ n +  1 = 

" - "  2 n  + 1 1  2 n  + 1 "  

Therefore, the subgroup generated by C"z,+I is also 
C2, + ~. The operation C2n + 1 is the rotation generated by 2 

through the angle 2 × 2zc/(2n + 1) = 2zt/(n + ½). Owing 
to this fact we can denote the operation C2,+1 by the 
symbol Cn +~. The elements of the non-evident sub- 
groups considered are the following: 

e,c,+~,c~.+~,c~.+~,c'.+~,...,c~.+~,.... 
One can now proceed to the finite double point 

groups with improper rotations. The following theorem 
will be proved. 

Theorem 2 

The non-evident double point subgroups can contain 
only the following operations: 

CnP+ ½, (IC,, + ½)q, ( IC,  + ½)r, 

where p, q, r and n are integers. 
Proof  From the proof of the preceding theorem we 

know that the non-evident subgroups can contain only 
the following proper rotations: E, C,, + ½, C2+ ½ . . . . .  For 
completeness, the improper rotations of the form ICk 
and I C  k should also be considered. In a similar way as 
before one can see that for even k one can have: 

(ICk)k = (ICk) k = 

(I  and I commute with every Ck). 
This means that the non-evident subgroup cannot 

contain the rotations IC  k or -iC k with even k. 
Thus, every non-evident subgroup can include only 

such improper rotations for which k is an odd integer. 
It denotes that every non-evident subgroup has to be 
constructed from the operations of the form: 

C•+ ½, ( IC,  + ½)q, ( IC,  + ½)r. 

Theorem 2 gives all the possible elements of the 
non-evident subgroups of the finite double point groups. 
One can now combine these elements in order to find 
all the non-evident subgroups. 

The last theorem will now be proved• 

Theorem 3 

All the possible non-evident subgroups of the finite 
double point groups are the following: 

t z ,  l 
• • • • , , • . . . . . .  • 

2 n  ~°+&= {E, C,, + ~, C,,~+ &, C,~+ ~, . . . ,C.+~} 
• • . • • • • . • • • • • . 

C.½,= { E , I }  

• • • • • • • • • • • • • • 

• • • • , • • • • • • • • • 

~7= IE, i} 
× 

C~z= C~ x c~7 
• • • • • • • • • • • • . • 

Proof  It is very easy to verify that all the listed sets 
form groups. We shall prove now that the above list of 
non-evident subgroups is complete• Two cases have to 
be considered: (1) the subgroups with one odd-order 
symmetry axis, (2) the subgroups with several odd- 
order symmetry axes. 

At the beginning the subgroups with one odd-order 
symmetry axis are taken into account. In this case 
every non-evident subgroup is a combination of the 
element listed in Theorem 2. Of course, not all possible 
combinations are allowed. One excludes the com- 
binations leading to f7, because such combinations 
correspond to the evident groups. For example, {I, 7} 
is excluded because I I = E .  One can verify by 
inspection that the list of subgroups considered with 
one odd-order axis is complete. 

Finally one should remark that the non-evident 
subgroup cannot contain two or more (case 2) 
nonparallel odd-order symmetry axes. It is well known 
that the point group (single or double) with more than 
one odd-order symmetry axis always contains at least 
one even-order axis, but such an axis cannot exist in the 
non-evident subgroups (Theorems 1 and 2). 

These three theorems permit the subgroups of the 
double point group to be found, similarly as the 
Opechowski rules permit the classes of the double 
group to be found (e.g. Opechowski, 1940; Bradley & 
Cracknell, 1972; Backhouse, 1973, 1975). 

From the geometrical point of view all the groups 
found in Theorem 3 are new. But, taking into account 
their abstract definitions, we should remark that they 
are isomorphic to the groups already known• For 
example, the group C~ is isomorphic to the group C3, 
the group C!; is isomorphic to the groups C2, Cs, C~, 
and so on. 
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Abstract 

The definition of the double space groups is extended. 
All the new double space groups are classified. 

The symmetry operations forming the space group G 
obey the following multiplication rule: 

{R21v 2} {R,Iv,} = {R2R1]v2 + R 2 v,}. 

The space group G can be expressed as the sum of the 
left cosets of the translation group of one of the Bravais 
lattices T: 

G =  {Rllv 1} T +  {R2[v2} T +  ...  + {Rhlv h} T, 

where the rotational parts R 1, R2, . . . ,  R h form one of 
the 32 crystallographic point groups. 

In the case of double groups, for every element R t of 
the single point group there are two corresponding 
elements: R l and R v We assume that both elements R t 
and/~l have the same effect in acting on vectors vy: 

h I Vj = R i vj .  

The elements R l and/~t obey the multiplication rule of 
the double point group. 

The commonly used (e.g. Bradley & Cracknell, 
1972) definition of the double space group G ÷ 
corresponding to the single space group G is given by 
the formula: 
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6 + =  {R~lv,} T + tkllV~} T + {R21v2} T +/k~lv~} T 
+ "'" + {RhlVh} T +  {RhlVh} T, 

where R l and R~ are the elements of the double point 
group corresponding to the operation R t in the single 
point group formed by R a, R 2, ..., R h. The multi- 
plication rules for the members of the double space 
group G + have the form: 

{.R2Iv2 } {RIIV 1 } = {,R2 RllV2 + R 2 Vl} 

{R~lv,~} {k~lv~} =/R~ ~lv~ + R~ v~/ 

{R2[v2 } {RIIVI } = {R 2 Rliv2 + R 2 Vl}. 

According to the definition we have 230 double 
space groups (as in the case of the single space groups). 
Each of these groups contains the pairs of elements: 
{RIIv l} and {/~llVi}. 

It seems that the above definition is not complete. 
For example, the subgroup G~ + of the group G + formed 
by the elements 

tE~0} T, 

where T is the translational group and E denotes the 
identity, is not the double space group in the sense of 
the definition given above. This is a rather trivial 
example. HoWever, the following example is not so 
trivial. 

It is easy to verify that the set G~ given by the 
formula: 

G2+= {El0} T +  {C~lO} T +  {~10}  T, 
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